The blanching process expels air trapped inside plant tissues, which is a vital step before canning.[4] Blanching prevents the expansion of air during processing, which reduces strain on the containers and the risk of cans having faulty seams.[4] Moreover, removing gas from foods like pears results in better texture and reduces oxidation of the product.[4] Also, the intercellular gases removed results in better color retention.[7]
Other uses of blanching are enhancing drying rate and product quality, decreasing microbial load, removing pesticide and toxic residues, increasing extraction of bioactive compounds, surface cleaning, removing damaged seeds or foreign materials, killing parasites and their eggs, and reducing oil uptake.[4]
For hot water blanching, vegetables are immersed under pre-warmed water (70 to 100 °C) for varying amounts of time, depending on type and quantity.[4] When the product is heated by water, greater uniformity of heating is achieved, especially when compared to hot air. This advantage allows hot water blanching at lower temperatures, but requires longer blanching times.[2] Water is heated and cooled using heat exchangers and recirculated for continuous use, reducing costs.[3]
Steam blanching systems inject hot air (~100 °C) onto food as it passes through the blanching system on a conveyor belt.[2] This method greatly reduces the leaching of water-soluble compounds from the product and is the preferred technique for smaller foods and those with cut surfaces.[2][3] Steam blanching is more energy-efficient, and the ability for quick heating allows for shorter processing times. This reduced heat exposure preserves color, flavor, and overall quality of the food; however, evaporation may occur leading to lower masses and product yields.[3]
Directly following the heat treatment, vegetables/fruits are quickly chilled by cold water.[2] A common alternative to cooling with cold water is cooling with cold air. This method of cooling prevents the leaching of water-soluble nutrients; however, the air causes evaporation and lowers the mass of the vegetable—a monetary disadvantage for industry.[3]
Emerging technologies include ohmic, infrared, microwave, and radio frequency blanching.[4]
Time and temperature
It is important to consider the recommended times and temperatures for a food product when blanching. Times and temperatures are based on the type of food, size, shape, and other factors.[3] Over-blanching can lead to an excessive loss of nutrients and aromatic compounds, as well as softening of the food.[3] Blanching at temperatures or times lower than those recommended may not effectively inactivate all enzymes. In addition, this may also cause the release of more enzymes from the plant tissue, causing greater overall enzymatic activity and faster spoiling of the product.[3]
Dsadvantages
A limitation to hot water blanching is the leaching of water-soluble nutrients and the degradation of thermal sensitive compounds.[4] Vitamins, minerals, and other water-soluble compounds, such as proteins, sugars, and flavor compounds, diffuse out of the food and into the water, lowering the overall quality of the food.[4] The degree to which compounds diffuse out of food depends on the food's composition and characteristics, the water to food ratio, the blanching temperature, and other variables.[3] Ascorbic acid, thiamin, and many aromatic compounds are heat-sensitive.[citation needed]


.jpg)

No comments:
Post a Comment